Искусственный интеллект в сфере здравоохранения: различия между версиями

Материал из rupedia.org
Перейти к навигации Перейти к поиску
p>InternetArchiveBot
(Спасено источников — 7, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.8.8)
Admin (обсуждение | вклад)
м (2 версии импортировано)
 
(нет различий)

Текущая версия от 15:16, 16 сентября 2022

Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Основной целью приложений, связанных со здоровьем человека, является анализ взаимосвязи между методами профилактики или лечения и результатами лечения пациентов. Были разработаны и применены на практике программы искусственного интеллекта, которые проводят диагностику процессов, разработку протоколов лечения, разработку лекарственных средств, мониторинг состояния пациента. Здравоохранение остается одной из главных областей инвестирования в ИИ.

История

Развитие искусственного интеллекта, как научного направления, стало возможным только после создания ЭВМ. Это произошло в 40-х годах XX века. В это же время Н. Винер создал свои основополагающие работы по кибернетике.

В 1954 году В МГУ под руководством профессора А. А. Ляпунова начал свою работу семинар «Автоматы и мышление». В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Считается, что именно в это время родился искусственный интеллект в России.

Исследования, проведенные в 1960-х и 1970-х годах, позволили создать первую экспертную систему, которая известна как DENDRAL Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., & Lederberg, J. (1993). DENDRAL: a case study of the first expert system for scientific hypothesis formation. Artificial intelligence, 61(2), 209—261.. В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN Clancey, W. J., & Shortliffe, E. H. (1984). Readings in medical artificial intelligence: the first decade. Addison-Wesley Longman Publishing Co., Inc., которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине. Однако, MYCIN и другие системы, такие как Internist-1 и CASNET не достигли широкого применения.

1980-е и 1990-е годы привели к распространению микрокомпьютеров и созданию глобальных сетей. Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны. Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей. Новые подходы, связанные с теорией нечётких множеств, сетей Байеса и искусственных нейронных сетей, были созданы, чтобы отражать развитие потребности здравоохранения в интеллектуальных вычислительных системах.

Однако с 2002 года технологии сделали большой шаг вперед, а к программам внедрения искусственного интеллекта в медицину подключились и IT-гиганты, и целые государства. Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной (или прецизионной) медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности. В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины.

Медико-технологические достижения, произошедшие в этот полувековой период, позволили вывести здравоохранение на новый уровень. Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ:

  • Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных.
  • Увеличение объема и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов.
  • Рост геномных баз данных секвенирования. Jha, A. K., DesRoches, C. M., Campbell, E. G., Donelan, K., Rao, S. R., Ferris, T. G., … & Blumenthal, D. (2009). Use of electronic health records in US hospitals. New England Journal of Medicine, 360(16), 1628—1638.
  • Широкое внедрение электронных медицинских систем записи данных.

К 2019 году для специального исследования будут отобраны 1 миллион добровольцев. Исследование направлено на то, чтобы показать связь между состоянием здоровья, образом жизни, окружающей средой, а также социальным и экономическим статусом. Полученные данные будут обработаны с помощью ИИ.

Сферы применения в медицине

  • приложения и программные продукты для распознавания медицинских изображений (снимков МРТ, заключений УЗИ, кардиограмм, результатов компьютерной томографии);
  • стартапы для разработки лекарственных препаратов (микроскопический анализ, изучение эффективности препаратов, исследование вирусов и поиск эффективных вакцин);
  • использование технологий машинного обучения в сфере протезирования (интеллектуальные системы разрабатывают удобные протезы с учетом анатомических особенностей человека);
  • приложения для удаленной помощи пациенту (они популярны в Великобритании — с их помощью врачи общей практики могут в удаленном режиме дать рекомендации для лечения простудных болезней или других состояний, не угрожающих жизни);
  • стартапы по лечению раковых заболеваний (например, SOPHiA AI — приложение по диагностике рака, привлекшее 30 млн долларов инвестиций, умеющее анализировать клиническую картину состояния пациента и предлагать эффективную схему лечения).

Примеры

Корпорация IBM

Компания IBM разрабатывает системы в области лечения онкологии. Также проводит совместную работу с Джонсон & Джонсон в области исследования и лечения хронических заболеваний.

Microsoft

Корпорация Microsoft занимается разработкой наиболее эффективных лекарств и методов лечения от рака. Проект включает в себя анализ медицинских изображений опухолей и математический анализ развития клеток.

Компания Google

Платформа DeepMind компании Google используется Национальной службой здравоохранения Великобритании, чтобы обнаружить определенные риски для здоровья на основе данных, собранных через мобильные приложения. Второй проект включает в себя анализ медицинских изображений, полученных от пациентов, для разработки алгоритмов «компьютерного зрения» для обнаружения раковых тканей.

Корпорация Intel

Корпорация Intel разрабатывает программы с ИИ, которые определяют пациентов, входящих в группу риска, и предлагают вариант лечения.

Компания Medtronic

Компания Medtroniс совместно с IBM разрабатывают приложение для людей, страдающих сахарным диабетом. Приложение будет способно определить критическое снижение уровня сахара в крови за 3 часа до наступления события. Для этого используют данные с глюкометров и инсулиновых помп от 600 анонимных пациентов. Отслеживать своё здоровье люди смогут с помощью специального приложения и носимых медицинских устройств.

Так же многими компаниями разрабатываются системы, позволяющие реанимировать пациентов с заболеваниями сердца.

Инвестиции

За последние несколько лет на разработки и исследования потрачено более $1 млрд. Согласно прогнозам исследовательской компании Research and Markets, к 2020 году рынок ИИ вырастет до $5,05 млрд. Спрос на клинические испытания, моделирование лечения, новые исследования и решения растет постоянно, поэтому, несомненно, как раз здравоохранение станет одним из самых быстрорастущих сегментов. Еще неизвестно, когда ИИ сможет давать на 100 % точные рекомендации врачам, однако уже сегодня он способен помочь в решении повседневных задач

Источники